Home
Class 12
MATHS
sin^(-1)(x^(2)sqrt(1-x)-sqrt(x)sqrt(1-x^...

sin^(-1)(x^(2)sqrt(1-x)-sqrt(x)sqrt(1-x^(4)))

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))dx

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]=

Write simplest form: sin^(-1)(x^(2)sqrt(1-x^(2))+x sqrt(1-x^(4)))

sin^(-1)(x^(2)sqrt(1-x^(2))+x sqrt(1-x^(4))), write simplest from

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

The value of sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))] is equal to

If y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2)) and (dy)/(dx)=1/(2sqrt(x(1-x)))+p , then p is equal to 0 (b) 1/(sqrt(1-x)) sin^(-1)sqrt(x) (d) 1/(sqrt(1-x^2))

Find the derivation of sin^-1 (x^2 sqrt(1-x) - sqrtx sqrt(1-x^4)) with respect to x.

sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)