Home
Class 12
MATHS
[" If "ab=1],[qquad [Delta=a^(2)-b^(2),2...

[" If "ab=1],[qquad [Delta=a^(2)-b^(2),2ab,-2b],[2ab,1-a^(2)+b^(2),2a],[2b,-2a,1-a^(2)-b^(2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

|[1+a^(2)-b^(2),2ab,-2b],[2ab,1-a^(2)+b^(2),2a],[2b,-2a,1-a^(2)-b^(2)]| =

1+a^(2)-b^(2),2ab,-2b2ab,1-a^(2)+b^(2),2a2b,-2a,1-a^(2)-b^(2)]|=(1+a^(2)+b^(2))^(3)

Find the value |{:(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2)):}|

The value of the determinant |(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2))| is equal to

Prove that: {:|(1+a^2-b^2,2ab,-2b),(2ab,1-a^2+b^2,2a),(2b,-2a,1-a^2-b^2)|

Using properties of determinants, prove that: |(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2))|=(1+a^(2)+b^(2))^(3)

By using properties of determinants , show that : {:[( 1+a^(2) -b^(2) ,2ab , -2b),( 2ab, 1-a^(2) +b^(2) , 2a),( 2b, -2a, 1-a^(2) -b^(2)) ]:}=( 1+a^(2) +b^(2)) ^(3)

The value of the determinant |{:(1+ a^(2) - b^(2),2 ab , - 2b),(2ab, 1 - a^(2) + b^(2), 2a),(2b , -2a , 1-a^(2) - b^(2)):}| is equal to