Home
Class 12
MATHS
f:R rarr(-1,1),f(x)=(10^(x)-10^(-x))/(10...

f:R rarr(-1,1),f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x))." Find "f^(-1)," if it exists."

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =(10^(x)-10^(-x))/(10^(x) +10^(-x)) then f^(-1)(x) =

f: R rarr (-1, 1) , f(x) = (10^(x)-10^(x))/(10^(x)+10^(-x)). If inverse of f^(-1) exists then find it .

If f:R rarr(-1,1) defined by f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is invertible,find f^(-1)

Show that f: R rarr (-1,1) is defined by f(x) = (10^(x)-10^(-x))/(10^(x)+10^(-x)) is invertible also find f^(-1) .

If f: Rvec(-1,1) defined by f(x)=(10^x-10^(-x))/(10^x+10^(-x)) is invertible, find f^(-1)

If f: Rvec(-1,1) defined by f(x)=(10^x-10^(-x))/(10^x+10^(-x)) is invertible, find f^(-1)

f(x)={[(1)/(e^(x-1)),,x!=10,,x=1

Let f(x)=sec^-1(x-10)+cos^-1(10-x). Then range of f(x) is

Let f(x)=sec^(-1)(x-10)+cos^(-1)(10-x) Then range of f(x) is

The function f:R^(-1)rarr R^(-1) defined by f(x)=10^(x)-10^(|x|)rarr R^(-1) defined by modulus function)