Home
Class 10
MATHS
" Prove that: "sec^(6)A-tan^(6)A=1+3tan^...

" Prove that: "sec^(6)A-tan^(6)A=1+3tan^(2)A+3tan^(4)A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sec^(4)A-sec^(2)A=tan^(2)A+tan^(4)A .

Prove that :sec^(6)x-tan^(6)x-3sec^(2)x" ."tan^(2)x=1

prove that 1+2sec^(2)A*tan^(2)A-sec^(4)A-tan^(4)A=0

Prove :sec^(6)theta=tan^(6)theta+3tan^(2)theta sec^(2)theta+1

Prove that: tan(pi/6).tan(pi/3)=tan(pi/4)

Prove that : tan^(4) A + tan^(2) A = sec^(4) A - sec^(2) A

Prove that 2(tan^(-1)1/4+tan^(-1)2/9)=tan^(-1)4/3 .

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that : 2 tan^(-1) (1/3) +tan^(-1) (1/6) = tan^(-1) (22/21)