Home
Class 12
MATHS
int(0)^( pi)log(1+cos x)dx=-pi(log2)...

int_(0)^( pi)log(1+cos x)dx=-pi(log2)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)log(1+cosx)dx=-pi(log2)

int_(0)^(pi//2)log(cosx)dx=

int_(0)^((pi)/(2))log(cos x)dx=

If int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2), then int_(0) ^(pi//2) log (sec x ) dx =

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

int_(0)^(pi//2)log(sinx)dx=