Home
Class 12
MATHS
The value of the integral int(0)^(2a) (f...

The value of the integral `int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_0^(2a) (f(x))/(f(x) + f(2a - x)) is :

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

The value of int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to -

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then, the value of the integral int_(0)^(a) (1)/(1+e^(f(x)))dx is equal to

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be a function that satisfies f(x)+g(x)=x^(2) . Then the value of the integral int_(0)^(1) f(x)g(x) dx is equal to -