Home
Class 12
MATHS
" If "I(n)=int(0)^( pi/4)tan^(n)xdx," th...

" If "I_(n)=int_(0)^( pi/4)tan^(n)xdx," then for any positive integer "n," then value of "n(I_(n+1)+I_(n-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

If rArr I_(n)=int_(0)^(pi//4) tan ^(n)x dx , then for any positive integer, n, the value of n(I_(n+1)+I_(n-1)) is,

If rArr I_(n)=int_(0)^(pi//4) tan ^(n)x dx , then for any positive integer, n, the vlau of (I_(n+1)-I_(-1)) is,

If I_(n)=int_(0)^((pi)/(4))tan^(n)thetad theta , for any positive integer n, then the value of n(I_(n-1)+I_(n+1)) is -

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

If I_n = int_0^(pi//4) tan^n theta d theta , then for any +ve integer n, the value of n(I_(n - 1) + I_(n + 1)) is :

Let I_(n)=int_(0)^(pi//4)tan^(n)xdx,n in N , Then

I_n= int_0^(pi/4) tan^(n)xdx then I_3+I_5 is

For a positive integer n, what is the value of i^(4n+1) ?