Home
Class 12
MATHS
If cosy=x cos(a+y)," prove that " (dy)/...

If `cosy=x cos(a+y)," prove that " (dy)/(dx) =(cos^(2)(a+y))/(sin a)`, where `a ne 0` is a constant .

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin y = x cos (a + y) , prove that (dy)/(dx) = (cos^2 (a + y))/(cos a)

If cos y = x cos(a+y) then prove that dy/dx = (cos^2(a+y))/sin a

If cos y = x cos (a+y) Then prove that (dy)/(dx) = (cos^(2) (a+y))/(sin a ) , cosa ne +-1

If cos y=x cos(a+y), where cos a!=-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)