Home
Class 12
MATHS
Orthocentre of the triangle with vertice...

Orthocentre of the triangle with vertices `(sqrt3,sqrt10),(sqrt7,sqrt6),(sqrt5,sqrt8)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The orthocentre of a triangle whose vertices are (0,0),(sqrt3,0) and (0,sqrt6) is

If the vertices of a triangle are (sqrt(5),0) ,sqrt(3),sqrt(2)), and (2,1), then the orthocentre of the triangle is (sqrt(5),0) (b) (0,0)(sqrt(5)+sqrt(3)+2,sqrt(2)+1)( d) none of these

If the vertices of a triangle are (sqrt(5,)0) , ( sqrt(3),sqrt(2)) , and (2,1) , then the orthocentre of the triangle is (a) (sqrt(5),0) (b) (0,0) (sqrt(5)+sqrt(3)+2,sqrt(2)+1) (d) none of these

If the vertices of a triangle are (sqrt(5,)0) , ( sqrt(3),sqrt(2)) , and (2,1) , then the orthocentre of the triangle is (sqrt(5),0) (b) (0,0) (c) (sqrt(5)+sqrt(3)+2,sqrt(2)+1) (d) none of these

(sqrt7-sqrt6)/(sqrt7+sqrt6)-(sqrt7+sqrt6)/(sqrt7-sqrt6)=

The value of the determinant Delta=|(sqrt(13)+sqrt3,2sqrt5,sqrt5),(sqrt(15)+sqrt(26),5,sqrt(10)),(3+sqrt(65),sqrt(15),5)| is equal to

The value of the determinant, " "|{:(sqrt(13)+sqrt(3), 2sqrt(5), sqrt(5)), (sqrt(15)+sqrt(26), 5, sqrt(10)), (3+sqrt(65), sqrt(15), 5):}| is :a) 5(sqrt(6)-5) b) 5sqrt(3)(sqrt(6)-5) c) sqrt(5)(sqrt(6)-sqrt(3)) d) sqrt(2)(sqrt(7)-sqrt(5))

Prove that sqrt7+sqrt6gtsqrt8+sqrt5 .

If x=3-sqrt(7),y=sqrt(8)-sqrt(6),z=sqrt(7)-sqrt(5) then