Home
Class 12
MATHS
int(0)^(1)(dx)/(1+x^(4))=Q...

int_(0)^(1)(dx)/(1+x^(4))=Q

Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int_(0)^(1) (dx)/(1+x^(4)) , then

If I=int_(0)^(1) (dx)/(1+x^(4)) , then

int_(0)^(1)(2x)/((1+x^(4)))dx

int_(0)^(1)(2x)/((1+x^(4)))dx

If I_(1)=int_(0)^(oo) (dx)/(1+x^(4))dx and I_(2)=underset(0)overset(oo)int x^(2)(dx)/(1+x^(4))"then"n (I_(1))/(I_(2))=

The value of int_(0)^(oo)(dx)/(1+x^(4)) is (a) same as that of int_(0)^(oo)(x^(2)+1dx)/(1+x) (b) (pi)/(2sqrt(2))( c) same as that of int_(0)^(oo)(x^(2)+1dx)/(1+x^(4))(d)(pi)/(sqrt(2))

Show that int_(0)^(1)(dx)/(1+x^(6))>(pi)/(4)

Find the value of int_(0)^(1)(x^(4)(1-x)^(4))/(1+x^(2))dx

The value of int_(0)^(1)(x^(4)(1-x)^(4))/(1+x^(2))dx is (are)