Home
Class 12
MATHS
Let a in (0,(pi)/(2)) and f(x)=sqrt(x^(2...

Let `a in (0,(pi)/(2))` and `f(x)=sqrt(x^(2)+x)+(tan^(2)alpha)/(sqrt(x^(2)+x)), x gt 0`. If the least value of `f(x)` is `2sqrt3`, then `alpha` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x sqrt(x^(2)+a^(2))+a^(2) log(x+sqrt(x^(2)+a^(2))) , then find the value of f'(0) .

If x gt 0 and alpha lt (pi)/(2) then (sqrt(x^(2) +x)+ (tan ^(2) alpha)/(sqrt(x^(2)+x))) is never less than-

If alpha in(0,(pi)/(2)) then sqrt(x^(2)+x)+((tan alpha)^(2))/(sqrt(x^(2)+x)) is always greater than or equal to

If alpha in (0, pi/2) , then sqrt(x^(2)+x)+(tan^(2)alpha)/(sqrt(x^(2)+x)) is always greater than or equal to (x != 0, -1)

If alpha in(0,(pi)/(2)), then sqrt(x^(2)+x)+(tan^(2)alpha)/(sqrt(x^(2)+x)) is always greater than or equal to (a)2tan alpha(b)1 (c) 2(d)sec2 alpha

" If "f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))" and "f(0)=0" Find the value of "f(sqrt(3))-ln(2+sqrt(3))

If f (x) =(1)/(sqrt(x+2sqrt((2x-4))))+(1)/(sqrt(x-2 sqrt(2x-4))) for x gt2, then the value of f (11) is-

If f(x)=(a+sqrt(a^2-x^2)+x)/(sqrt(a^2-x^2)+a-x) where a>0 then f'(0) has the value equal to

If f(x)=(a+sqrt(a^2-x^2)+x)/(sqrt(a^2-x^2)+a-x) where a>0 then f'(0) has the value equal to