Home
Class 12
MATHS
Show that the area of the triangle with ...

Show that the area of the triangle with vertices `(lambda, lambda-2), (lambda+3, lambda)` and `(lambda+2, lambda+2)` is independent of `lambda`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

The vertices of a triangle ABC are (lambda,2-2lambda), (-lambda + 1, 2lambda) and (-4-lambda, 6-2lambda). If its area be 70 units then number of integral values of lambda is (a) 1 (b) 2 (c) 4 (d) 0

The vertices of a triangle ABC are (lambda,2-2 lambda)(-lambda+1,2 lambda) and (-4-lambda,6-2 lambda). If its area be 70 units then number of integral values of lambda is

lambda ^ (3) -6 lambda ^ (2) -15 lambda-8 = 0

The point (lambda+1,1),(2 lambda+1,3) and (2 lambda+2,2 lambda) are collinear,then the value of lambda can be

if points (2lambda, 2lambda+2) , (3, 2lambda + 1) And (1,lambda + 1) are linear, then lambda find the value of

Is there a real value of lambda for which the image of the point (lambda,lambda-1) by the line mirror 3 x + y = 6 lambda is the point (lambda^2 + 1, lambda) If so find lambda . ,

Is there a real value of lambda for which the image of the point (lambda,lambda-1) by the line mirror 3x+y=6 lambda is the point (lambda^(2)+1,lambda) If so find lambda_(.)