Home
Class 11
PHYSICS
दो सदिशों vec(a) =3hat(i)-4hat(j)+5hat(k...

दो सदिशों `vec(a) =3hat(i)-4hat(j)+5hat(k)` एवं `vec(b)=-2hat(i)+hat(j)-3hat(k)`के अदिश एवं सदिश गुणनफल ज्ञात कीजिए |

Promotional Banner

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

Find |vec(a)xx vec(b)| , if vec(a)=2hat(i)+hat(j)+3hat(k) and vec(b)=3hat(i)+5hat(j)-2hat(k) .

If vec(A)=-2hat(i)+3hat(j)-4hat(k)and vec(B)=3hat(i)-4hat(j)+5hat(k) then vec(A)xxvec(B) is

If vec(A)=-2hat(i)+3hat(j)-4hat(k)and vec(B)=3hat(i)-4hat(j)+5hat(k) then vec(A)xxvec(B) is

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

Show that the vectors vec(a) = hat(i) - 2hat(j) + 3hat(k), vec(b) = -2hat(i) + 3hat(j) - 4hat(k) and vec(c) = hat(i) - 3hat(j) + 5hat(k) are coplanar.