Home
Class 12
MATHS
For a positive integer n, let fn(theta) ...

For a positive integer `n,` let `f_n(theta) = (2 cos theta+1)(2 cos theta -1)(2 cos2theta - 1) (2 cos(2^2)theta-1)...(2cos(2^(n-1))theta-1).` Which one of the following hold(s) good?

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (2cos2 theta+1)/(2cos theta+1)=(2cos theta-1)(2cos2 theta-1)(2cos2^(2)theta-1)...(2cos2^(n-1)theta-1)

Prove that: (2cos2^(n)theta+1)/(2cos theta+1)=(2cos theta-1)(2cos2 theta-1)(2cos2^(2)theta-1)...(2cos2^(n-1)theta-1)

Prove that : (2 cos 2^n theta + 1)/(2 cos theta +1) = (2 cos theta -1) (2 cos 2theta -1) (2 cos 2^2 theta -1) … (2 cos 2^(n-1) theta -1)

Prove that : (2 cos 2^n theta + 1)/(2 cos theta +1) = (2 cos theta -1) (2 cos 2theta -1) (2 cos 2^2 theta -1) … (2 cos 2^(n-1) theta -1)

The value (2cos theta-1)(2cos2 theta-1)(2cos4 theta-1)(2cos8 theta-1)=

Prove that : (2 cos 2^n theta +1)/(2cos theta +1)= (2cos theta-1)(2cos 2 theta-1) (2cos 2^2 theta-1)............ (2cos 2^(n-1)theta-1) .

consider f_(n)(theta)=(2cos theta-1)(2cos2 theta-1)(2cos(2^(2)theta)-1)....(2cos(2^(n)theta)-1) the value of f_(n)(theta) is equal to

Prove that, (2 cos theta - 1)(2 cos 2 theta-1)(2 cos2^(2) theta-1)...(2 cos 2^(n-1) theta-1) = (2 cos 2^(n) theta + 1)/(2 cos theta + 1)

If (2^n+1)theta=pi then 2^n costheta cos2theta cos2^2 theta .......cos 2^(n-1) theta=