Home
Class 12
MATHS
" 19.If "f:R rarr(0,2)" defined by "f(x)...

" 19.If "f:R rarr(0,2)" defined by "f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+1" is invertible,find "f^(-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f: R->(0,\ 2) defined by f(x)=(e^x-e^(-x))/(e^x+e^(-x))+1 is invertible, find f^(-1)dot

If f: R->(0,\ 2) defined by f(x)=(e^x-e^(-x))/(e^x+e^(-x))+1 is invertible, find f^(-1)dot

The function f:R rarr R defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) is

Let f:R rarr R" be defined by "f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)). Then

f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

R rarr R be defined by f(x)=((e^(2x)-e^(-2x)))/(2) is f(x) invertible.If yes then find f^(-1)(x)

R rarr R be defined by f(x)=((e^(2x)-e^(-2x)))/2 . is f(x) invertible. If yes then find f^(-1)(x)

R rarr R be defined by f(x)=((e^(2x)-e^(-2x)))/2 . is f(x) invertible. If yes then find f^(-1)(x)

Let f:R rarr R be a function defined by,f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) then