Home
Class 11
MATHS
If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)+... ...

If `y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)+...` , then `(dy)/(dx)=` a. `y+1` b. `y-1` c. `y` d. `y^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+, is (dy)/(dx)=y+1 b.y-1 c.y d.y^(2)

If sin(x+y)=log(x+y) , then (dy)/(dx)= (a) 2 (b) -2 (c) 1 (d) -1

(dy)/(dx)+(1)/(2x)y=(x)/(y^(3))

If sin(x+y)=log(x+y), then (dy)/(dx)=(a)2 (b) -2(c)1(d)-1]

If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)=

If y^(3)-y=2x, then (x^(2)-(1)/(27))(d^(2)y)/(dx^(2))+x(dy)/(dx)=

(dy)/(dx)=(x+y+1)/(2x+2y+3)

(dy)/(dx)=(x+y+1)/(2x+2y+3)