Home
Class 12
MATHS
If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c...

If `bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1)` then the unit vector parallel to `bar(a)+bar(b)-bar(c)`, but in opposite direction is

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) but in the opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) but in the opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) but in the opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) , but in the opposite direction is

If bara=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) ,but in the opposite direction is

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0

bar(a),bar(b),bar(c ) are three coplanar vectors, If bar(a) is not parallel to bar(b) , Show that

Let bar(a) =(1,1,-1), bar(b) =(5,-3,-3) and bar(c) =(3,-1,2). If bar(r) is collinear with bar(c) and has length (|bar(a)+bar(b)|)/(2) then bar(r)

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

If bar(a),bar(b) and bar(c) are mutually perpendicular vectors then [bar(a)bar(b)bar(c)]=