Home
Class 12
MATHS
If h(x)=[f(x)]^(2)+[g(x)]^(2) and f'(x)=...

If `h(x)=[f(x)]^(2)+[g(x)]^(2)` and f'(x)=g(x),
`f''(x)=-f(x)`, h(5)=10 find h(10).

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be twice differentiable function such that f''(x)=-f(x) and f'(x)=g(x), h(x)={f(x)}^(2)+{g(x)}^(2) . If h(5) = 11, then h(10) is equal to :

If f(x)=sinx, g(x)=x^2 and h(x)=log x, find h[g{f(x)}].

Let f be a twice differentiable function such that f"(x) = -f(x) , and f'(x) = g(x) , h(x)=[f(x)]^2+[g(x)]^2 Find h(10), if h(5) = 11

Let f be a twice differentiable function such that f''(x)=-f(x)" and "f'(x)=g(x)."If "h'(x)=[f(x)]^(2)+[g(x)]^(2), h(a)=8" and "h(0)=2," then "h(2)=

If f(x)=4x-5,g(x)=x^(2) and h(x)=(1)/(x) , then f(g(h(x))) is :

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is