Home
Class 11
PHYSICS
The two vectors A=2hat(i)+hat(j)+3hat(k)...

The two vectors `A=2hat(i)+hat(j)+3hat(k)` and `B=7hat(i)-5hat(j)-3hat(k)` are :-
the sum and the differnce of two vectors `vec(A)` and `vec(B)` are ________ and ________ respectively.

Promotional Banner

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

Vectors vec A=hat i+hat j-2hat k and vec B=3hat i+3hat j-6hat k are

The angle between two vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)+5hat(k) is

If vec(a)=hat(i)+2hat(j)-hat(k) " and " vec(b)=3hat(i)+hat(j)-5hat(k) , find a unit vector in a direction parallel to vector (vec(a)-vec(b)) .

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

Determine a vector product of vec(A)=hat(i)+hat(j)+hat(k)and vec(B)=-3hat(i)+hat(j)+hat(k)