Home
Class 12
MATHS
Show that one value of (4+3i)^(-1//2)+(4...

Show that one value of `(4+3i)^(-1//2)+(4-3i)^(-1//2) is (3sqrt2)/(5).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (4 + 3i)^(2) = 7 + 24i , then a value of (7 + sqrt(-576))^(1//2) - (7-sqrt(-576))^(1//2) is :

State which of the following is the value of (1+i+i^(2)+i^(3)+i^(4)) ["given", i = sqrt(-1)].

What is the value of ((-1+i sqrt(3))/(2))^(3n)+((-1-i sqrt(3))/(2))^(3n), where i=sqrt(-1)?

The descending order of the values of z_1=((sqrt3)/(2)i+1/2)^6,z_2=((1)/(sqrt2)+(i)/(sqrt2))^4,z_3=((sqrt3)/(4)+(i)/(4))^6

find the value of |3+4i|+|1+5i|^(2)

Find the value of: (i) (sqrt 3 + 1)^4 - (sqrt 3 - 1)^4 (ii) (2 + sqrt 5)^5 + (2 - sqrt 5)^5

Find the value of 4+5[-(1)/(2)-i(sqrt(3))/(2)]^(344)+3[-(1)/(2)+i(sqrt(3))/(2)]^(365) (i=sqrt(-1))

the value of ((-1+sqrt(3)i)/(2))^(3n)+((-1-sqrt(3)i)/(2))^(3n)=

Plot the following numbers on a complex number plane and find their absolute values: (a) 5 (b) 2i (c) (i) 4-3i (ii) (sqrt(3))/(2)+(1)/(2)i

The value of 6+log_(3//2)(1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))) is