Home
Class 12
MATHS
" 7."quad (4x+2)sqrt(x^(2)+x+1)...

" 7."quad (4x+2)sqrt(x^(2)+x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(sqrt(x^(2) + 4x + 2 ))

Using properties of proportion, solve for x : (i) (sqrt(x + 5) + sqrt(x - 16))/ (sqrt(x + 5) - sqrt(x - 16)) = (7)/(3) (ii) (sqrt(x + 1) + sqrt(x - 1))/ (sqrt(x + 1) - sqrt(x - 1)) = (4x -1)/(2) . (iii) (3x + sqrt(9x^(2) -5))/(3x - sqrt(9x^(2) -5)) = 5 .

If x=(1)/(2)(sqrt(7)+(1)/(sqrt(7))) ,then , log_(27)((sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))) is equal to

int(x^(4)-1)/(x^(2))sqrt(x^(4)+x^(2)+1)dx equal to (A) sqrt((x^(4)+x^(2)+1)/(x)+c(B)sqrt(x^(4)+2-(1)/(x^(2)))+c)sqrt((x^(4)-x^(2)+1)/(x))+c

lim_(xto oo)(sqrt(4x^(2)+2x+1)-sqrt(4x^(2)+1)) is

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C