Home
Class 12
MATHS
If |z-1|=1, then...

If `|z-1|=1`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_(1)|=|z_(2)|=....|z_(n)|=1 , then show that, |z_(1)+z_(2)+z_(3)+....z_(n)|= |(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))+...+(1)/(z_(n))|

If |z_1|=1a n d|z_2|=2,t h e n Max (|2z_1-1+z_2|)=4 Min (|z_1-z_2|)=1 |z_2+1/(z_1)|lt=3 Min (|z_1=z_2|)=2

if z+(1)/(z)=1 then z^(4)+(1)/(z^(4))=

If z_1 and z_2 are two complex numbers for which |(z_1-z_2)(1-z_1z_2)|=1 and |z_2|!=1 then (A) |z_2|=2 (B) |z_1|=1 (C) z_1=e^(itheta) (D) z_2=e^(itheta)

If z_1 and z_2 are two complex numbers for which |(z_1-z_2)(1-z_1z_2)|=1 and |z_2|!=1 then (A) |z_2|=2 (B) |z_1|=1 (C) z_1=e^(itheta) (D) z_2=e^(itheta)

If |z_(1) | = |z_(2)| = 1 , then |z_(1) + z_(2)| =

If |z_1|=|z_2|=1 , then |z_1+z_2| =

If |z_(1)|!=1,|(z_(1)-z_(2))/(1-bar(z)_(1)z_(2))|=1, then