Home
Class 12
MATHS
Sn=sum(n=1) ^n n/(1+n^2+n^4 then S(10) ·...

`S_n=sum_(n=1) ^n n/(1+n^2+n^4` then `S_(10) ·S_(20)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If S=sum_(n=1)^(10)(2n+(1)/(2)), then S

Let U_(n)=(n!)/((n+2)!) where n in N. If S_(n)=sum_(n=1)^(n)U_(n), then lim_(n rarr oo)S_(n), equals

If S=sum_(n=2)^oo (3n^2+1)/(n^2-1)^3 then 9/S=

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then

If S(n)=sum_(k=1)^(n)(k)/(k^(4)+(1)/(4)), then (221S(10))/(10) is equal to:

Let T_(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S_(n)=sum_(r=1)^(n)T_(r) then find S_(15) .

Let T_(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S_(n)=sum_(r=1)^(n)T_(r) then find S_(15) .