Home
Class 12
MATHS
sin[cot^(-1)x]=...

sin[cot^(-1)x]=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: cos[tan^-1{sin(cot^-1x)}]=sqrt((1+x^2)/(2+x^2))

sin[cot^(-1){cos(tan^(-1)x)}]=

If A=sin[cot^(-1){cos(tan^(-1)x)}], then

If sin (cot^(-1)(1-x))=cos(tan^(-1)(-x)) , then x is

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

int_(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=

int_(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=