Home
Class 11
PHYSICS
0.4 किग्रा/मीटर रेखीय घनत्व वाली डोरी प...

0.4 किग्रा/मीटर रेखीय घनत्व वाली डोरी पर तरंग का समीकरण `y = 0.02 sin2pi ((t)/(0.04) - (x)/(0.5)) ` है। डोरी का तनाव होगा :

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of a wave on a string of linear mass density 0.04 kgm^(-1) is given by y = 0.02(m) sin[2pi((t)/(0.04(s)) -(x)/(0.50(m)))] . Then tension in the string is

The equation of a wave on a string of linear mass density 0.04 kgm^(-1) is given by y = 0.02(m) sin[2pi((t)/(0.04(s)) -(x)/(0.50(m)))] . Then tension in the string is

the equation of a wave on a string of linear mass density 0.04 kgm^(-1) is given by y = 0.02(m) sin[2pi((t)/(0.04(s)) -(x)/(0.50(m)))] . Then tension in the string is

The equation of a wave on a string of linear mass density 0.04 kg m^(-1) is given by y = 0.02 (m) sin [2pi((t)/(0.04(s))-(x)/(0.50(m)))] . The tension in the string is :

The equation of a wave on a string of linear mass density 0.04 kg m^(-1) is given by y = 0.02 (m) sin [2pi((t)/(0.04(s))-(x)/(0.50(m)))] . The tension in the string is :

{:(0.04x + 0.02y = 5),(0.5(x - 2) - 0.4y = 29):}

{:(0.04x + 0.02y = 5),(0.5(x - 2) - 0.4y = 29):}

The equation of a progressive wave is given by, y = 5 sin pi ((t)/(0.02) - (x)/(20)) m, then the frequency of the wave is

यदि (x)/(y)=((3)/(2))^(2)div ((5)/(7))^(0) , तब ((y)/(x))^(2) का मान क्या होगा -