Home
Class 12
MATHS
" Prove that "[vec a+vec b,vec b+vec c,v...

" Prove that "[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that,for any three vectors vec a,vec b,vec c[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Prove that [vec a,vec b,vec c+vec d]=[vec a,vec b,vec c]+[vec a,vec b,vec d]

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

If vec a , vec b , vec c are coplanar vectors, prove that |[vec a, vec b, vec c],[vec a.vec a ,vec a.vec b,vec a.vec c],[vec b.vec a, vec b.vec b, vec b.vec c]|=vec 0 .

Prove that : [(vec a × vec b) (vec b × vec c) (vec c × vec a)] = [vec a vec b vec c]^(2) .

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]