Home
Class 12
MATHS
" 17.If "y=(tan^(-1)x)^(2)," show that "...

" 17.If "y=(tan^(-1)x)^(2)," show that "(x^(2)+1)^(2)y_(2)+2x(x^(2)+1)y_(1)=2

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(tan^(-1)x)^(2), then prove that (1+x^(2))^(2)y_(2)+2x(1+x^(2))y_(1)=2

If y=(tan^(-1)x)^2 , show that (x^2+1)^2y_2+2x(x^2+1)y_1=2

If y=(tan^(-1)x)^2 , show that (x^2+1)^2y_2+2x(x^2+1)y_1=2 .

If y=(tan^(-1)x)^2 , show that (x^2+1)^2y_2+2x(x^2+1)y_1=2 .

If y=(cot^(-1)x)^(2), prove that y_(2)(x^(2)+1)^(2)+2x(x^(2)+1)y_(1)=2

If y=(cot^(-1)x)^(2), prove that y_(2)(x^(2)+1)^(2)+2x(x^(2)+1)y_(1)=2

If y=e^(tan^(-1)x) , show that (1+x^(2))y''+(2x-1)y'=0

If y=e^(tan^(-1)x) , show that (1+x^(2))y''+(2x-1)y'=0 .

If y=tan^(-1)x, show that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0