Home
Class 12
MATHS
If alpha, beta are the roots of the equ...

If ` alpha, beta` are the roots of the equation ` x^(2) + x + 1 = 0` then prove that ` alpha^(4) + beta^(4) + alpha^(-1) beta^(-1) = 0 `.

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta be the roots of the equation x^(2)+x+1=0 , the value of alpha^(4)beta^(4)-alpha^(-1)beta^(-1) is

If alpha and beta are the roots of the equation x ^(2) + 3x - 4 = 0 , then (1)/(alpha ) + (1)/(beta) is equal to

If alpha and beta are the roots of the quadratic equation x^(2) + 3x - 4 = 0 , then alpha^(-1) + beta^(-1) = "_____" .

If alpha,beta are the roots of the quadratic equation 4x^(2)-4x+1=0 then alpha^(3)+beta^(3)=

If alpha, beta are the roots of 1 + x + x^(2)= 0, then the value of alpha^(4) + beta^(4) + alpha^(-4)beta^(-4) is

If alpha and beta are the roots of the equation 4x^(2)+3x+7=0, then (1)/(alpha)+(1)/(beta)=