Home
Class 11
MATHS
[" (a) "1],[" (c) "3],[" 11If "z(r)=cos(...

[" (a) "1],[" (c) "3],[" 11If "z_(r)=cos((r alpha)/(n^(2)))+i sin((r alpha)/(n^(2)))," where "r=1,2,3,...,n" and "i=sqrt(-1)" ,then "lim_(n rarr oo)z_(1)z_(2)z_(3)...z_(n)" is equal to "],[[" (a) "theta^(" id ")," (b) "e^(-k/2)],[" (c) "e^(i alpha/2)," (d) "root(3)(e^(j alpha))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(r)=cos((ralpha)/(n^(2)))+isin((ralpha)/(n^(2))),"where "r=1,2,3,...,nandi=sqrt(-1),"then. "lim_(n to oo) z_(1)z_(2)z_(3)...z_(n) is equal to

If z_(r)=cos((ralpha)/(n^(2)))+isin((ralpha)/(n^(2))),"where"r=1,2,3,...,nandi=sqrt(-1),"then"lim_(n to oo) z_(1)z_(2)z_(3)...z_(n) is equal to

If z_(r)=(cos(pi alpha))/(n^(2))+i(sin(r alpha))/(n^(2)), where r=1,2,3...,n, then lim_(n rarr oo)z_(1)z_(2)z_(3)...z_(n) is equal to

If z_r =cos (ralpha)/(n^2)+isin (ralpha)/(n^2) ​ , where r=1,2,3,....n, then lim_(n→∞)(z_1.z_2.....z_n) is equal to

If z_r=cos(ralpha/n^2)+i"sin"(ralpha/n^2) , where r=1,2,3,…n, then lim_(nrarrinfty)z_1z_2...z_n is equal to

If z_(n)=cos((pi)/((2n+1)(2n+3)))+i sin((pi)/((2n+1)(2n+3))) ,then lim_(n rarr oo)(z_(1)*z_(2)*z_(3)...z_(n))=

If z_(r)=cos((pi)/(3^(r)))+i sin((pi)/(3^(r))),r=1,2,3 prove that z_(1)z_(2)z_(3)z_(oo)=i

If Z_r =cos ((pi)/(2^r))+isin((pi)/(2^r)) then Z_(1).Z_(2).Z_(3)"…….." upto oo equals