Home
Class 12
MATHS
Lt(x->0) ((x^4)/(int0^(x^2)tan^(-1) t dt...

`Lt_(x->0) ((x^4)/(int_0^(x^2)tan^(-1) t dt))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

Lt_(x rarr0)((int_(0)^(x)tan^(2)t sec^(2)tdt)/(x^(3)))=

{:(" " Lt),(x rarr 0):} (int_(0)^(x^(2))sec^(2) t dt)/(x sin x) =

The value of lim_(x->0) cosec^4 x int_0^(x^2) (ln(1 +4t))/(t^2+1) dt is

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

Lt_(x to oo) ((int_(0)^(x) e^(t) dt)^(2))/(int_(0)^(x)e^(2t^(2))dt)