Home
Class 11
MATHS
[" Let "f:R rarr R,f(x)={[2x+alpha^(2),q...

[" Let "f:R rarr R,f(x)={[2x+alpha^(2),quad x>=2],[(dot alpha x)/(2)+10,quad x<2]" .If "f(x)" is onto "],[" function,then "alpha" belongs to "],[[" (a) "[1,4]," (b) "[-2,3]]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R, then f(x)=2x+|cos x| is

Let f:R rarr R, f(x)=x+log_(e)(1+x^(2)) . Then

Let f:R rarr R, f(x)=x+log_(e)(1+x^(2)) . Then

Let f(x) :R->R,f(x)={(2x+alpha^2,xge2),((alpha x)/2+10,x lt 2)) If f(x) is onto function then alpha belongs to (A) [1,4] (B) [-2,3] (C) [0,3] (D) [2,5]

Let f(x) :R->R,f(x)={(2x+alpha^2,xge2),((alpha x)/2+10,x lt 2)) If f(x) is onto function then alpha belongs to (A) [1,4] (B) [-2,3] (C) [0,3] (D) [2,5]

Let f(x) :R->R,f(x)={(2x+alpha^2,xge2),((alpha x)/2+10,x lt 2)) If f(x) is onto function then alpha belongs to (A) [1,4] (B) [-2,3] (C) [0,3] (D) [2,5]

Let f(x) :R->R,f(x)={(2x+alpha^2,xge2),((alpha x)/2+10,x lt 2)) If f(x) is onto function then alpha belongs to (A) [1,4] (B) [-2,3] (C) [0,3] (D) [2,5]

If f:R rarr R,f(x)=(alpha x^(2)+6x-8)/(alpha+6x-8x^(2)) is onto then alpha in

Let f:R rarr R be defined by f(x)=2+alpha x,alpha!=0 , If f(x)=f^(-1)(x) , for all x in R , then alpha equals

If f:R rarr R,f(x)=2x-1 and g:R rarr R,g(x)=x^(2) then (gof)(x) equals