Home
Class 11
MATHS
f(x)=(e^(x)-e^(-x))/(2)" find invers "...

f(x)=(e^(x)-e^(-x))/(2)" find invers "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(e^(x)+e^(-x))/(2) then inverse of f(x) is

If f(x)=(e^(x)+e^(-x))/(2) then the inverse of f(x) is

Let f:R rarr R be defined by f(x)=(e^(x)-e^(-x))/2* Is f(x) invertible? If so,find is inverse.

Let f(x) = (e^(x) - e^(-x))/(2) and if g(f(x)) = x , then g((e^(1002) -1)/(2e^(501))) equals ...........

Let f(x) = (e^(x) - e^(-x))/(2) and if g(f(x)) = x , then g((e^(1002) -1)/(2e^(501))) equals ...........

Let f: RrarrR be defined by f(x)=(e^x-e^(-x))//2dot then find its inverse.

Let f: RrarrR be defined by f(x)=(e^x-e^(-x))//2dot then find its inverse.

Let f: RrarrR be defined by f(x)=(e^x-e^(-x))//2dot then find its inverse.

Let f: RrarrR be defined by f(x)=(e^x-e^(-x))//2dot Is f(x) invertible? If so, find is inverse.

f(x)=e^x-e^(-x) then find f'(x)