Home
Class 11
MATHS
cos [tan^-1 {sin (cot^-1 x)}] is equal t...

`cos [tan^-1 {sin (cot^-1 x)}]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cos [tan^-1 {sin (cot^-1 x)}] is

Find the value of, cos [tan^(-1) {sin (cot^(-1)x)}]

sin[cot^(-1) {tan(cos^(-1)x)}] is equal to

The value of 2tan^(-1)(cos ec tan^(-1)x-tan cot^(-1)x) is equal to (a)cot ^(-1)x( b ) (cot^(-1)1)/(x) (c)tan ^(-1)x (d) none of these

sin cot^(-1) tan cos^(-1) x is equal to :

If x gt 0 then the value of sin [cot ^(-1) cos( tan^(-1)x)] is equal to-

If x gt 0 , then the value of sin[cot^(-1)cos(tan^(-1)x)] is equal to -

If x gt 0 , then the value of sin[cot^(-1)cos(tan^(-1)x)] is equal to -

The value of sin cot^(-1)tan cos^(-1)x is equal to: