Home
Class 12
MATHS
prove that cos tan ^(-1) ""sin cot ^...

prove that ` cos tan ^(-1) ""sin cot ^(-1) ""x=((x^(2)+1)/(x^(2)+2))^(1/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that : cos [ tan^(-1) { sin (cot^(-1) x)}]= sqrt((x^2 +1)/(x^2 +2))

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

Prove that cos[tan^(-1). {sin (cot^(-1)x)}]=sqrt((1+x^(2))/(2+x^(2))) .

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((1+x^2)/(2+x^2) .

Prove that cos[Tan^(-1){sin(Cot^(-1)x)}] = sqrt((x^(2)+1)/(x^(2)+2))

tan (cos ^(-1) x) = sin (cot ^(-1) ""(1)/(2))