Home
Class 11
MATHS
[" Find the real solutions of the equati...

[" Find the real solutions of the equation "],[tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the real solutions of the eqution tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

The number of real solutions of the equation tan^(-1) sqrt( x ( x + 1)) + sin^(-1) sqrt(x^(2) + x + 1) = (pi)/(2) is

Solve the equation: tan^(-1)sqrt(x^(2)+x)+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

Solve the equation tan^(-1)sqrt(x^(2)+x+sin^(-1))sqrt(x^(2)+x+1)=(pi)/(2) .

The number of solution of the equation tan^-1 sqrt(x(x+1)) + sin^-1sqrt(x^2 + x + 1) = pi/2

Solve the equation: tan^(-1)sqrt(x^2+x)+sin^(-1)sqrt(x^2+x+1)=pi/2

The number of real roots of the equation tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(4) is :

solve : tan^(-1) sqrt(x(x+1))+sin ^(-1) (sqrt(1+x+x^(2)))=(pi)/(2)

The number of real solutions of the equations: tan^-1 sqrt(x(x+1)) + sin^-1 sqrt(x^2 + x+1) = pi/2 is