Home
Class 11
MATHS
a^(log(a)x)=x...

a^(log_(a)x)=x

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that log_(ab)(x)=((log_(a)(x))(log_(b)(x)))/(log_(a)(x)+log_(b)(x))

Given x>1 and log_(x)(x^(x^(2)))+log_(x)(x^(-5x))=log_(x)((1)/(x^(6)))

If log_(x)(2+x)<=log_(x)(6-x) then x can be

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

Find the square of the sum of the roots of the equation log_(3)x*log_(4)x*log_(5)x=log_(3)x*log_(4)x+log_(5)x*log_(3)x

The set of all solutions of the equation log_(3)x log_(4)x log_(5)x=log_(3)x log_(4)x+log_(4)x log_(5)x+log_(5)x+log_(3)x is

The sum of solutions of the equation log_(2)x log_(4)x log_(6)x=log_(2)x*log_(4)x+log_(4)x log_(6)x+log_(6)x*log_(2)x is equal to

The set of all solutions of the equation log_(3)x log_(4)x log_(3)x=log_(3)x log_(4)x+log_(4)x log_(5)x+log_(5)x log_(3)x is