Home
Class 11
MATHS
" 25.If "lim(x rarr1)(x^(4)-1)/(x-1)=lim...

" 25.If "lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(x rarr k)(x^(3)-k^(3))/(x^(2)-k^(2))," find the value of "k" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

Let lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(k rarr k)(x^(3)-k^(3))/(x^(2)-k^(2)) then value of k is

If Lim_(x to 1) (x^(4)-1)/(x-1)=Lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , find the value of k .

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

Find value of a if lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(x rarr a)(x^(3)-a^(3))/(x^(2)-a^(2))

Evaluate lim_(x rarr1)(x^(3)-1)/(x-1)

Find the value of k, if lim_(x rarr 1) (x^(4)-1)/(x-1) = lim_(x rarr k)(x^(3)-k^(3))/(x^(2)-k^(2))