Home
Class 10
MATHS
" ned "(a)/(x-a)+(b)/(x-b)=(2c)/(x-c)...

" ned "(a)/(x-a)+(b)/(x-b)=(2c)/(x-c)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve by factorization: (a)/(x-a)+(b)/(x-b)=(2c)/(x-c)

Find x in terms of a,b and c(a)/(x-a)+(b)/(x-b)+(c)/(x-c)=2(c)/(x-c)x!=a,x!=b,x!=c

Long-answer type questions (L.A.) (a)/(x-a)+(b)/(x-b)=(2c)/(x-c)(xnea,b,c) .

Find x in terms of a , b and c : (a)/(x - a) + (b)/(x - b) = (2 c)/(x - c) , x - a , b , c

Solve by factorization: a/(x-a)+b/(x-b)=(2c)/(x-c)

If the roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are equal, then a^(2)+b^(2)+c^(2) is equal to

A root of the equation (a+c)/(x+a)+(b+c)/(x+b)=(2(a+b+c))/(x+a+b) is

A root of equation (a+c)/(x+a)+(b+c)/(x+b)=(2(a+b+c))/(x+a+b) is a

A root of the equation (a+c)/(x+a)+(b+c)/(x+b)=(2(a+b+c))/(x+a+b) is

(a^2/(x-a)+b^2/(x-b)+c^2/(x-c)+a+b+c)/(a/(x-a)+b/(x-b)+c/(x-c))