Home
Class 12
MATHS
[" 68."sqrt(i)+sqrt(-i)=],[" 1) "i sqrt(...

[" 68."sqrt(i)+sqrt(-i)=],[" 1) "i sqrt(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(i)-sqrt(-i)=sqrt(2)

sqrt(i)+sqrt(-i)=sqrt(2)

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

Show that one value of (sqrt(i)+sqrt(-)i) is sqrt(2)

sqrt(-i) = (1-i)/sqrt2

( (sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3)) )/( (sqrt(3)+i sqrt(2))+(sqrt(3)-i sqrt(2)) )

Show that (1 / sqrt(2) + i / sqrt(2))^10 + (1 / sqrt(2) - i / sqrt(2))^10 = 0 .