Home
Class 12
MATHS
[" Evample "30" If with reference to the...

[" Evample "30" If with reference to the right handed system of mutually perpendicular "],[" unit vectors "hat i,hat j" and "hat k,vec alpha=3hat i-hat j,quad vec beta=2hat i+hat j-3hat k" ,then express "vec beta" in the form "],[hat beta=vec beta_(1)+vec beta_(2)," where "vec beta_(1)" is parallel to "vec alpha" and "vec beta_(2)" is perpendicular to "vec alpha]

Promotional Banner

Similar Questions

Explore conceptually related problems

vec alpha=3hat i+4hat j+5hat k and vec beta=2hat i+hat j-4hat k then express vec beta in the form of vec beta=vec beta_(1)+vec beta_(2) where vec beta_(1) is parallel to vec alpha and vec beta_(2) is perpendicular to vec alpha .

If vec alpha = 3 hat i - hat j and vec beta = 2 hat i + hat j - 3 hat k , then express, vec beta in the form vec beta = vec beta_(1) + vec beta_(2) , where vec beta_(1) is parallel to vec alpha and vec beta_(2) is perpendicular to vec alpha .

If with reference to a right handed system of mutually perpendicular unit vectors hat i,hat j,hat k we have vec alpha=3hat i-hat j, and vec beta=2hat i+hat j-3hat k Express vec beta in the form vec beta=vec beta_(1)+vec beta_(2), where vec beta_(1) is parallel to vec alpha and vec beta_(2) is perpendicular to vec alpha .

If vec alpha=3hat i+4hat j+5hat k and vec beta=2hat i+hat j-4hat k then express vec beta in the form vec beta_(1)+vec beta_(2), where vec beta_(1) is parallel to vec alpha and vec beta is perpendicular to vec alpha.

If with reference to the right handed system of mutually perpendicular unit vectors hat i , hat j and hat k , ->alpha=3 hat i- hat j , ->beta=2 hat i+ hat j-3 hat k , then express ->beta in the from ->beta= ->beta_1+ ->beta_2 , where -

If vec alpha=3 hat i-hat j and beta=2 hat i+hat j-3 hat k , express vec beta in the form vec beta=vec (beta)_1+ vec (beta)_2 where beta_1 is parallel to vec alpha and vec(beta)_2 is perpendicular to vec alpha .

Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat(k) . If vec(beta)=vec(beta)_(1)-vec(beta)_(2) , where vec(beta)_(1) is parallel to vec(alpha) and vec(beta)_(2) is perpendicular to vec(alpha) then vec(beta)_(1)xx vec(beta)_(2) is equal to :

Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat(k) . If vec(beta)=vec(beta)_(1)-vec(beta)_(2) , where vec(beta)_(1) is parallel to vec(alpha) and vec(beta)_(2) is perpendicular to vec(alpha) then vec(beta)_(1)xx vec(beta)_(2) is equal to :