Home
Class 11
PHYSICS
किसी दिक्स्थान पर एक स्वेच्छ गति के लिए...

किसी दिक्स्थान पर एक स्वेच्छ गति के लिए निम्नलिखित संबंधों में से कौन - सा सत्य है ?
(a) ` v _("average") = (1//2) (v(t_1) + v ( t _2 ))`
(b) ` v _("average") = [r(t_2) - r (t_1)]//(t_2-t_1) `
(c ) ` v (t) = v (0) + at `
(d) ` r (t) = r (0) + v (0) t + (1//2) a t ^(2)`
(e) ` a_("average") = [v(t_2) - v (t _1)]// (t_2 - t _1) `
यहाँ 'average ' का आशय समय अंतराल ` t_2 ` व `t_1 ` से संबंधित भौतिक राशि के औसत मान से है |

Promotional Banner

Similar Questions

Explore conceptually related problems

For any arbitrary motion in space , which of the following relations are true : (a) V_("average")=(1//2)(v(t_(1))+v(t_(2))) (b) V_("average")=[r(t_(2))-r(t_(1))]//(t_(2)-t_(1)) (c ) V(t)=V(0)+at (d) r(t) =r(0)+v(0)T+(1//2)at^(2) (e ) a_("average")=[v(t_(2))-v(t_(1))]//(t_(2)-t_(1)) (The average stands for average of the quantity over the time interval t_(1)" to "t_(2))

Foe an arbitrary motion in sparce, which ot the following relations are true : (a0 vec (average ) = 1/2 [ vec v (t_10 + vec v (t_2)] (b) vec _(average ) = [vec r 9t_2) - vec r (t-1 0 ] // (t_2 -t_10 (c ) vec v(t) = vec v (0) + vec a t (d) vec r 9t) = vec r90) + vec v (0) t + ( 1//2 ) vec a t^2 (e) vec a_(average) =[ vec v( t_2) - vec v (t-2 ) ] // (t_2 -t_1)1 The average stands for average of the wuantity over the time interval t_1 and t_2 ].

For any arbitrary motion in space, which of the following relations are true? (a) v_("average") = (1//2)(v(t_(1)) + v(t_(2))) (b) v_("average") = [r(t_(2))-r(t_(1)]//(t_(2)-t_(1)) (c) v(t) = v(0) + at (d) a_("average") = [v(t_(2))-v(t_(1))]//(t_(2)-t_(1)) The average stands for average of the quantity over time interval t_(1) to t_(2)

For any arbitrary motion in space, which of the following relations are true? a) v_("average") = (1//2)(v(t_(1) + v(t_(2)) b) v_("average") = [r(t_(2))-r(t_(1)]/(t_(2)-t_(1) v(t) = v(0) + at d) a_("average") = [v(t_(2))-v(t_(1))/[t_(2)-t_(1)) The average stands for average of the quantity over time interval t_(1) to t_(2)

The velocity - time graph of a particle in one dimensional motion is shown in figure. Which of the following formulae are correct for describing the motion of the particle over the time- interval t _(1) to t _(2) : (a) x (t _(2)) = x (t _(1)) +v (t _(2) - t _(1)) + ((1)/(2)) a (t _(2) - t _(1)) ^(2) (b) v (t_(2)) = v (t_(1)) + a (t _(1)))//(t_(2) -t _(1)) (C) v _("average")= (x (t _(2)) -x (t _(1)))//(t_(2) -t _(1)) (d) a _("average")= (v(t _(2)) - v (t _(1))) //(t_(2) -t _(1)) (e) x (t _(2))=x(t_(1)) + v _("average") (t _(2) - t _(1)) + ((1)/(2)) a _("average") (t _(2) -t _(1)) ^(2) (f) c (t _(2)) - c (t _(1)) = area under the v-t curve bonunded by the t -axis and the dotted line shown.