Home
Class 14
MATHS
[" 93.The number of real solutions of th...

[" 93.The number of real solutions of the "],[" following equation is: "],[tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt((x^(2)+x+1))=(pi)/(2)],[" (1) Zero "],[" (3) Two "]

Promotional Banner

Similar Questions

Explore conceptually related problems

solve : tan^(-1) sqrt(x(x+1))+sin ^(-1) (sqrt(1+x+x^(2)))=(pi)/(2)

The number of real solutions of the equation tan^(-1) sqrt( x ( x + 1)) + sin^(-1) sqrt(x^(2) + x + 1) = (pi)/(2) is

Solve the equation: tan^(-1)sqrt(x^(2)+x)+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

Solve the equation tan^(-1)sqrt(x^(2)+x+sin^(-1))sqrt(x^(2)+x+1)=(pi)/(2) .

Solve: tan^(-1)sqrt(x(x+1) + sin^(-1)sqrt(1+x+x^2) = pi/2

The number of real solutions of the equations: tan^-1 sqrt(x(x+1)) + sin^-1 sqrt(x^2 + x+1) = pi/2 is

Find the real solutions of the eqution tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x + 2) + cos^(-1) sqrt(4x - x^(2) -3) = pi is