Home
Class 12
MATHS
If f' is a differentiable function satis...

If `f'` is a differentiable function satisfying `f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2` then the value of `f(pi)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to

If a differentiable function f(x) satisfies f(x)=int_(0)^(x)(f(t)cos t-cos(t-x))dt then value of (1)/(e)(f''((pi)/(2))) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to