Home
Class 12
MATHS
यदि x^(y)=e^(x-y) हो, तो सिद्ध कीजिए कि-...

यदि `x^(y)=e^(x-y)` हो, तो सिद्ध कीजिए कि-
`!=(logx)/((1+logx)^(2))=(logx)/({log(ex)}^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=x^(logx)+(logx)^(x)

int(log(x//e))/((logx)^(2))dx=

int[log(logx)+(1)/((logx)^(2))]dx

If x^(y) =e^(x-y) , prve that , (dy)/(dx) =(logx)/((log ex)^(2)) .

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

int(1+logx)/(x(2+log x)(3+logx))dx

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))