Home
Class 12
MATHS
cos^(-1)(2x-1)=...

cos^(-1)(2x-1)=

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function cos ^(-1)(2 x-1) is

2cos^(-1)x=cos^(-1)(2x^(2)-1)

Prove that 2 cos^(-1)x =cos^(-1)(2x^(2)-1) .

The equation 2cos^(-1)x=cos^(-1)(2x^(2)-1) is satisfied by

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to cos^(-1)(2x^(2)-1) .

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to cos^(-1)(2x^(2)-1) .

If y=cos^(-1)((2^(x)+1)/(1+4^(x)), find (dy)/(dx)

If y=cos^(-1)((2^x+1)/(1+4^x)), find (dy)/(dx)

Find (dy/dx) in the following. y=cos ^(-1)((2 x)/(1+x^2))

If f(x)=cos^(-1)(2x^(2)-1), x in [-1,1]. Then