Home
Class 12
MATHS
If veca, vecb and vecc are unit vectors...

If `veca, vecb and vecc ` are unit vectors then `|veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+ |vecb-vecc|^2 + |vecc^2-veca^2|^2 does not exceed

If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then " |2veca+ 5vecb+ 5vecc| is

If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then find the value of " |2veca+ 5vecb+ 5vecc|

If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then " |2veca+ 5vecb+ 5vecc| is

veca,vecb and vecc are three unit vectors . Show that, |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2le9 .

If veca,vecb,vecc are unit vectors, then : |veca -vecb|^(2)+|vecb -vecc|^(2)+|vecc-veca|^(2) does not exceed :

If veca. Vecb and vecc are unit vectors satisfying |veca -vecb|^(2) +|vecb -vecc| ^(2) |vecc -veca| =9 , " then " |2 veca + 5 vecb + 5 vecc| is equal to

If veca,vecb,vecc are unit vectors satisfying |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2=9 then |2veca+5vecb+3vecc| is

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to: