Home
Class 12
MATHS
log(10)^(2) x + log(10) x^(2) = log(10)^...

`log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

Solution set of the in equality log_(10^(2)) x-3(log_(10)x)( log_(10)(x-2))+2 log_(10^(2))(x-2) lt 0 , is :

Solution set of the in equality log_(10^(2)) x-3(log_(10)x)( log_(10)(x-2))+2 log_(10^(2))(x-2) lt 0 , is :

((log_(10)x)/(2))^(log_(10)^(2)x+log_(10)x^(2)-2)=log_(10)sqrt(x)

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

If log_(10)2, log_(10) (2^(x)-1) and log_(10) (2^(x) + 3) are three consecutive terms of an A.P for

If log_(10 ) x - log_(10) sqrt(x) = (2)/(log_(10 x)) . The value of x is

Find 'x' satisfying the equation 4^(log_(10) x + 1) - 6^(log_(10)x) - 2.3 ^(log_(10)x^(2) + 2) = 0 .

The value of p in R for which the equation sin^(-1)((log_(10)x)^(2)-2log_(10)x+2)+tan^(-1)((log_(10)x)^(2)-2log_(10)x+2)+cos^(-1)((log_(10)x)^(2)-2(log_(10)x))=p possess solution is

(x-2)^(log_(10)^(2)(x-2)+log_(10)(x-2)^(5)-12)=10^(2log_(10)(x-2))