Home
Class 12
MATHS
यदि f(x) = {{:((x)/(|x|+x^(2))",",x ne 0...

यदि `f(x) = {{:((x)/(|x|+x^(2))",",x ne 0),(0",",x = 0):}` तो सिध्द कीजिए कि `lim_(x rarr 0) f(x)` का अस्तित्व नहीं है ।

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a function defined by f(x) = {{:((3x)/(|x|+2x),x ne 0),(0,x = 0):} Show that lim_(x rarr 0) f(x) does not exist.

If f(x) = [((sin [x])/([x]), [x] ne 0),(0, [x] = 0)] , then lim_(x rarr 0) f(x) is :

Evaluate : lim_(x to 0)f(x)={{:(abs(x)/x",",x ne 0), (" 0,", x=0.):}

Find lim_(x rarr 0) f(x) , where f (x) =|x|-5.

Evaluate lim_(x to 0) where f(x)={:{(|x|/x, x ne 0),(0, x=0):}

Evaluate lim_(x rarr 0)f(x) , where f(x)= {(|x|/x,x ne 0),(0,x=0):}

If f(x)=|x|, prove that lim_(x rarr0)f(x)=0