Home
Class 11
PHYSICS
a. Prove that the vector vec(A)=3hat(i)-...

a. Prove that the vector `vec(A)=3hat(i)-2hat(j)+hat(k)`, `vec(B)=hat(i)-3hat(j)+5hat(k),` and `vec(C )=2hat(i)+hat(j)-4hat(k)` from a right -angled triangle.
b. Determine the unit vector parallel to the cross product of vector `vec(A)=3hat(i)-5hat(j)+10hat(k)` & `=vec(B)=6hat(i)+5hat(j)+2hat(k).`

Promotional Banner

Similar Questions

Explore conceptually related problems

The three vector vec(A) = 3hat(i)-2hat(j)+hat(k), vec(B)= hat(i)-3hat(j)+5hat(k) and vec(C )= 2hat(i)+hat(j)-4hat(k) from

Show that the vectors vec(a) = 3hat(i) - 2hat(j) + hat(k), vec(b) = hat(i) - 3hat(j) + 5hat(k) and vec(c) = 2hat(i) + hat(j) - 4hat(k) form a right angled triangle.

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Show that the vectors vec(a) = hat(i) - 2hat(j) + 3hat(k), vec(b) = -2hat(i) + 3hat(j) - 4hat(k) and vec(c) = hat(i) - 3hat(j) + 5hat(k) are coplanar.

Prove that the vectors vec a= hat i- 3 hat j - 5 hat k , vec b= 2 hat i- hat j+ hat k and vec c= hat i+ 2 hat j+ 6 hat k from of a right angled triangle.