Home
Class 11
PHYSICS
You are given vector vec(A)=5hat(i)-6.5h...

You are given vector `vec(A)=5hat(i)-6.5hat(j)` and `vec(B)=10hat(i)-7hat(j)`.
A third vector `vec(C )` lies in the `x-y` plane. Vector `(C )` is perpendicular to vector `vec(A)` and the scalar product of `vec(C )` with `vec(B)` is 15. From this information, find the component of `vec(C )`

Promotional Banner

Similar Questions

Explore conceptually related problems

You are given vector vec(A)=5hat(i)-6hat(j) and vec(B)=10hat(i)+8hat(j) . A third vector vec(C) lies in the x-y plane. vec(C ) is perpendicular to vector vec(A) and the scalar product of vec(C ) with vec(B) is 100. Find the component of vec(C )

If vec(a)=3hat(i)+hat(j)-4hat(k), vec(b)=6hat(i)+5hat(j)-2hat(k) and |vec(c )|=3 , find the vector vec(c ) , which is perpendicular to both vec(a) and vec(b) .

Given vec (a) = 4 hat (i) + 5 hat (j) - hat (k), vec(b) = hat (i) - 4 hat (j) + 5 hat (k) If |vec (c ) | = 21 and vec(c ) is perpendicular to vec(a) and vec (b ) , find in component form the vector vec(c )

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

For given vectors,vec a=2hat i-hat j+2hat k and vec b=-hat i+hat j-hat k find the unit vector in the direction of the vector quad vec a+vec b